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Abstract— Implementation and analysis of Monte Carlo Tree 

Search and Minimax algorithm for computers to play Dots and 

Boxes is the online version of the pen and paper game, Dots and 

Boxes which is the most widely played game.  We have made the 

Dots and Boxes game Convenient, Fast to Play, & of course 

pleasing to the eye (with our UI). The Rules of the game are 

simple: Players take turns joining two horizontally or vertically 

adjacent dots by a line. A player/Computer that completes the 

fourth side of a square (a box) colours that box and must play 

again. When all boxes have been colored, the game ends, and the 

player/Computer who has colored more boxes wins. Easy Right? 

Well not that easy when you play, it challenges your critical 

thinking as the game progresses. Keeping that in mind we also 

have scores counted by computer and shown as the boxes get 

colored to make sure the player knows. We have used Artificial 

Intelligence  Algorithms Monte Carlo Tree Search for searching 

the game tree. Monte-Carlo Tree Search (MCTS) and other 

algorithms like MiniMax or Alpha-Beta pruning are used to play 

against human players and also against themselves, The process 

of Monte Carlo Tree Search can be broken down into four 

distinct steps, i.e. selection, expansion, simulation, and 

backpropagation. Minimax algorithm plays a critical role in 

selecting moves that will try to find moves that give fewer points 

to the opponent and more to the computer making it tough on an 

opponent. 

 

Keywords - Monte-Carlo Tree Search, Mini-Max Algorithm, Game 

Tree, Game.  

I. INTRODUCTION  

Dots and Boxes is a fun and simple classic pen-and-paper 
game for 2 or more players. But what if it is not constrained to 
pen and paper? Well, in that case, it surely saves more paper, 
and what if we make it a bit more interesting and pleasing to 
the eye, that's what we thought & and that's exactly what we 
did. An elegant UI enhances the game experience and makes it 
comfortable and exciting at the same time. The game starts 
with an empty grid of dots. Usually, a coin is flipped or Rock-
Paper-Scissors is played to see who goes first, but in Dots and 
boxes, the Player/Computer will be selected randomly. 
Players/Computers take turns connecting 2 unjoined 
horizontally or vertically adjacent dots. A player who 
completes the fourth side of a 1x1 box earns one point and 
must take another turn. The game ends when all lines are 
drawn and boxes are claimed. The player/Computer with the 
most points wins. If more than one player/Computer has the 
same high score, the game is a tie. Now, you have 2 options, 
Play with Algorithms or Watch algorithms play. We have used 
the Monte Carlo tree search algorithm and Minimax algorithm 
for the computer to select the upcoming moves and let them 
learn as they play, Player to Computer and Computer to 
Computer both. After certain moves, we have enough 
parameters to analyze the two algorithms and differentiate 
between them. Also, we have tried to make an elegant UI, 
Convenient as it only requires a Browser (Chrome or another), 
which is Challenging as the Game progresses. 
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II. LITERATURE SURVEY 

The paper describes the idea and the execution of 

Implementation and analysis of Monte Carlo Tree Search and 

Minimax algorithm for computers to play Dots and Boxes, 

The biggest problem arrived is the parameters for 

differentiating Monte-Carlo algorithm and Mini-max 

algorithm, the only way we could arrive at the conclusion is 

the make Algorithms play against each other at least 100 - 200 

times to have enough data to allocate parameters for 

differentiating between them. The goal of this project is to 

develop an artificial intelligence player for dots and boxes (a 

simple children’s game) which improves upon standard 

methods. Dots and boxes have proven more difficult to work 

with than other simple games.  

 

Even games whose rules are much more complicated – chess, 

for instance – have seen great success with the standard 

methods, such as minimax and alpha-beta. However, these 

approaches have not worked well with dots and boxes due to 

the difficulty of evaluating a given board and a large number 

of possible moves. 

 

To overcome these problems, a relatively new method of 

guiding gameplay is used: Monte Carlo tree search (MCTS). 

MCTS has recently been successful in Go players, which 

previously had been extremely weak MCTS was used to 

overcome the inherent difficulties that arise in Go because of 

the massive number of possible moves and board 

configurations in a standard game. Because the two games 

share the features which make other approaches unsuccessful 

and because of its success in Go, MCTS seems to be the ideal 

candidate for playing dots and boxes. This project applies 

MCTS to dots and boxes and offers two potential 

improvements to the standard MCTS. 

 

The advantage of testing such methods in a game setting is 

that one can evaluate the performance in closed systems with 

simple rules that are easier to write algorithms for and where 

the optimal result can usually be calculated using known 

methods for comparison. 
 

III. OBJECTIVE 

The overarching objective of this project is to analyze the 

game of Dots and Boxes using Monte-Carlo Tree Search and 

MiniMax Algorithm and to analyze various game-playing 

strategies made by Both the Algorithm. In which we will be 

differentiating both the algorithms against each other and find 

out which Algorithm has the most chances to win the game. 

As both algorithms are used in playing games or to make 

game moves, The final goal is to find which algorithm is best 

to make moves in Dot and Boxes.  

 

The first phase of this project is to create a working and 

reliable implementation of the game Dots and Boxes that can 

be played between two players, human or Algorithm. The 

second phase of this project is to analyse both the game itself 

and various strategies used to play the game. This will be 

achieved using the implementation of the game as a testbed. 

The specified game-playing strategies to be implemented are: 

making moves randomly, making moves in a predetermined 

order, making moves based on a Minimax evaluation of the 

game tree, and making moves based on a Monte Carlo Tree 

Search (MCTS) evaluation of the game tree.  

 

IV. METHODOLOGY 

The algorithms chosen and implemented have been picked to 

help analyse the game itself, and also to demonstrate how 

effective different strategies can be in the game of dots and 

boxes.  

The approach being taken to tackle this problem is a practical 

one. A significant proportion of the work being done for this 

project is in the implementation. Creating the game and 

creating the players for the game will take some time; the rest 

of the time will be spent analysing the performance of the 

players and writing the report. Results will be gathered 

through repeated testing of each game playing strategy. Each 

player type will have a strategy they use. To compare them 

they will be matched against every other player as well as 

themselves, in order to produce a ranking from best to worst 

and quantify their relative strength. All of the planned players, 

with the exception of the random player, will have parameters 

that can be tweaked to improve their performance. There will 

also be repeated testing of these players with modified 

parameters to determine what the best configuration is for 

each player. Once the best parameters for each player are 

discovered, the players can be trialled against each other. The 

players will be trialled on multiple sizes of the game board. 

Standard trials will take place on 3x3 and 4x4 boards as these 

boards have previously been solved, allowing comparison 

between the results achieved and known results. Trials will 

also take place on a 5x5 board, as this board has not yet been 

solved and it will be interesting to analyse the results on this 

board. Facing every player against every other is a good way 

to analyse the relative strengths of each player and is also a 

good way to analyse the game itself. The data obtained from 

players playing against copies of themselves can show if a 

particular board starting position is stronger. If the player who 

starts the match wins significantly more games than the player 

who goes second, it will show that player 1 is in an 

intrinsically stronger position than player 2. 
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A. Monte Carlo Tree Search 

The principle operation of MCTS is to analyse the best moves 

that are available to the player. A state tree is constructed with 

nodes corresponding to potential moves that can be made. 

These moves are discovered by the selection process and 

analysed by random playout. The selection of moves is made 

using the UCB formula for exploitation and exploration. The 

formula for calculating 

UCB for each individual move is: 

 

 
Wi = win score for this node, 

ni = number of times this node has been visited, 

Ni = number of times the parent of this node has been visited, 

C = exploration coefficient, which is tuned experimentally. 

 

This calculates a value for UCB with two parameters. The first 

parameter is the exploitation 

parameter, which is simply a ratio of how many winning states 

have been discovered after this node and how many times this 

node has been visited. The second parameter is the exploration 

parameter, which factors in how many times this node has 

been visited in total compared to its parent node. 

The exploration parameter is scaled by c, which allows the 

algorithm to be tuned to explore more or explore less 

depending on the use case.  

 

One iteration of the MCTS algorithm includes four steps: 

 

1. Selection: The selection will start at the root node 

and select the child of this node with the highest UCB 

value. This process continues, selecting the child of 

the current node with the highest value until a leaf 

node is reached. A leaf node is a node that has no 

children. 

 

2.  Expansion: Once a leaf node has been found and 

selected, create children from this node 

corresponding to all of the possible moves that could 

be made from this game state. 

 

3. Simulation: Choose one of these node children and 

perform ‘rollout’.This is a simulation of the game 

playing out until the end. The basic implementation 

of this is a random playout. 

 

 

4. Backpropagation: Take the result of the simulation 

and backpropagate the score up the tree, all the way 

to the root node. 

 

 

The implementation of Monte Carlo Tree Search (MCTS) was 

created following guides found online. The Player class 

MonteCarloPlayer contains an instance of MonteCarloTree. 

This instance of MonteCarloTree is populated with multiple 

MonteCarloNode instances. The methods that make up the 

MCTS algorithm are contained in MonteCarloTree and in 

MonteCarloNode. 

 

The main loop for MCTS controls the logic and methods like 

it controls the ‘Selection’ step of the algorithm and can initiate 

the ‘Simulation’ and ‘Backpropagation’ steps. Each pass of 

the loop will first check if the current node has not been 

visited, or if the game in that state is finished. If these 

conditions are not true then the best child of this node will 

become the new current node. This method, choose child, also 

controls the ‘Expansion’ step of the algorithm. If the node has 

no children when its choose child method is called then it will 

create children for itself and return one of these. If the current 

node has not been visited before (n == 0), then the algorithm 

will perform a rollout from this node. A rollout consists of 

making a copy of the game, getting the list of all moves left to 

be made, shuffling this list, and then playing all of the moves. 

At the end of the rollout method, the node will call its own 

backpropagate method. This will increment its visit counter 

(n) and will update its win counter (t). The backpropagate 

method then calls the backpropagate method of its parent 

node. This will ensure the values are back propagated up the 

entire tree all the way to the root. Once this is complete, the 

main loop will set the current node back to the root node and 

start again. This is performed until the time limit is reached, at 

which point the child of the root node with the highest UCB 

value is returned. 
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Figure 1. Monte Carlo Tree Search 

 

 

 

B. Minimax Algorithm 

The minimax algorithm is a decision-making algorithm used 

to determine the most optimal move of a player in a two-

player game against their opponent. The minimax algorithm is 

simply a recursive backtracking algorithm that uses the depth-

first search to explore the entire tree while selecting the most 

optimal path for a player. 

 

Minimax was originally designed for n-player zero-sum games 

with perfect information and has more recently been extended 

to complex games and general decision making in the 

existence of uncertainty. As Dots and Boxes is an n-player 

zero sum game with perfect information, minimax is a very 

good fit for this scenario. 

 

Here, the player (maximizer) aims to get the maximised value 

from the algorithm while the opponent/other player 

(minimizer) aims to get the minimised value from the 

algorithm.The initial values of the maximizer & minimizer are 

set to their worst case values of -infinity & +infinity. The 

maximizer selects the maximum possible value from its 

children while the minimizer selects the minimum possible 

value from its children. 

 

Minimax is mainly implemented using three main functions; 

Maximise, Minimise and Evaluate.The MaxMove function 

receives a game state. If the game has terminated in this game 

state it will return a static evaluation of the game using the 

EvalGameState function. This returns a score for the state the 

game is in, using specific game knowledge. If the game has 

not terminated then all possible moves from this position are 

generated and iterated through. For each move that can be 

made a new game state is generated, simulating the player 

making this move. This new game state is then passed to the 

MinMove function, which will perform the same operations 

with one key difference. When the bottom of the tree is 

reached and the game states are evaluated, the scores are 

returned and passed back to these functions. The MaxMove 

function will save the move that returned the highest score, 

whereas the MinMove function will save the move that 

returned the lowest score. These represent opposing players 

making moves. The MaxMove function represents the player 

making the best move they can possibly make and the 

MinMove function represents their opponent making the best 

move they could possibly make. In the case of a zero-sum 

game the best move for an opponent will correspond to the 

worst move for the player.  

Minimax that exploits the property: 

 

 
 

This leads to the NegaMax algorithm, which simply negates 

the value returned from the recursive call to NegaMax. In the 

case of a game in which players strictly make alternate moves 

this produces the exact same result as Minimax. This 

simplifies the algorithm as it removes the need for separate 

MinMove and MaxMove functions. This algorithm also 

introduces the concept of a depth variable. This allows the 

calling function to control the depth of the search in the game 

tree. When NegaMax is called it will be passed a positive 

integer, when NegaMax is called again, the depth is lowered 

by 1. When the depth value reaches 0 an evaluation of the 

game state is made and returned. This is the version of the 

algorithm that will be adapted for use in this project. 
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Figure 2. Minimax Algorithm 

 

V. CONCLUSION  

The aims of this project that were outlined in the important 

conclusions section included creating an implementation of 

the game, creating working computer players and analysing 

game playing strategies. Most of these objectives have been 

successfully achieved, with the exception of determining 

which player position is stronger. A working and reliable 

implementation of the game Dots and Boxes has been created. 

The time spent designing and implementing the game in a 

modular way paid off; the game is reliable and the player 

system is very loosely coupled to the game system. 

 A working GUI has also been created to make playing the 

game enjoyable and easy. The GUI has been designed so that 

users cannot enter data that would cause the game to crash. It 

has also been designed so that humans can play against each 

other, against the computer or can watch two computer players 

play against each other.  

The computer players created for the game are successful in 

their implementation. They play reliably and are consistent in 

their strategies. Data was collected by simulating many games 

with each of the players, on multiple different board sizes. 

This data was analysed and a ranking was produced, ordering 

the players from strongest to weakest. This ranking is 

Minimax, Monte Carlo Tree Search, Ordered then Random. 

Multiple potential improvements to the players that could be 

made have been identified after analysis of the data obtained 

and further research. These are described in the future work 

section of the report.  

The only aim that has not been achieved is determining if 

either player 1 or player 2 is in a stronger position on any 

board size. This was attempted and data was gathered, but the 

data was inconclusive and no definitive answer was found. 

This is likely because the computer players that have been 

implemented are not strong enough to exploit the strength 

inherent in either position. To determine this in future, 

stronger players would need to be produced and more trials 

would need to be performed.  
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