
© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 13 Issue: 03 | NCASIT-2022 | April 18th 2022

Paper is available at http://www.jrps.in | Email : info@jrps.in

Refereed & Peer Reviewed

12

Implementation and analysis of Monte Carlo Tree Search and Minimax algorithm for

computer to play Dots and Boxes

Mr.Charan Pote ,Professor

of Computer Technology

Priyadarshini College of Engineering

Nagpur, India

Mr.Dhruv Shende

of Computer Technology

Priyadarshini College of Engineering

Nagpur, India

Mr.Ritik Satokar

of Computer Technology

Priyadarshini College of Engineering

Nagpur, India

 Mr.Sagar Singh

of Computer Technology

Priyadarshini College of Engineering

Nagpur, India

Mr.Sahil Bhonde

of Computer Technology

Priyadarshini College of Engineering

Nagpur, India

Mr.Tanmay Tarte

of Computer Technology

Priyadarshini College of Engineering

Nagpur, India

Abstract— Implementation and analysis of Monte Carlo Tree

Search and Minimax algorithm for computers to play Dots and

Boxes is the online version of the pen and paper game, Dots and

Boxes which is the most widely played game. We have made the

Dots and Boxes game Convenient, Fast to Play, & of course

pleasing to the eye (with our UI). The Rules of the game are

simple: Players take turns joining two horizontally or vertically

adjacent dots by a line. A player/Computer that completes the

fourth side of a square (a box) colours that box and must play

again. When all boxes have been colored, the game ends, and the

player/Computer who has colored more boxes wins. Easy Right?

Well not that easy when you play, it challenges your critical

thinking as the game progresses. Keeping that in mind we also

have scores counted by computer and shown as the boxes get

colored to make sure the player knows. We have used Artificial

Intelligence Algorithms Monte Carlo Tree Search for searching

the game tree. Monte-Carlo Tree Search (MCTS) and other

algorithms like MiniMax or Alpha-Beta pruning are used to play

against human players and also against themselves, The process

of Monte Carlo Tree Search can be broken down into four

distinct steps, i.e. selection, expansion, simulation, and

backpropagation. Minimax algorithm plays a critical role in

selecting moves that will try to find moves that give fewer points

to the opponent and more to the computer making it tough on an

opponent.

Keywords - Monte-Carlo Tree Search, Mini-Max Algorithm, Game

Tree, Game.

I. INTRODUCTION

Dots and Boxes is a fun and simple classic pen-and-paper
game for 2 or more players. But what if it is not constrained to
pen and paper? Well, in that case, it surely saves more paper,
and what if we make it a bit more interesting and pleasing to
the eye, that's what we thought & and that's exactly what we
did. An elegant UI enhances the game experience and makes it
comfortable and exciting at the same time. The game starts
with an empty grid of dots. Usually, a coin is flipped or Rock-
Paper-Scissors is played to see who goes first, but in Dots and
boxes, the Player/Computer will be selected randomly.
Players/Computers take turns connecting 2 unjoined
horizontally or vertically adjacent dots. A player who
completes the fourth side of a 1x1 box earns one point and
must take another turn. The game ends when all lines are
drawn and boxes are claimed. The player/Computer with the
most points wins. If more than one player/Computer has the
same high score, the game is a tie. Now, you have 2 options,
Play with Algorithms or Watch algorithms play. We have used
the Monte Carlo tree search algorithm and Minimax algorithm
for the computer to select the upcoming moves and let them
learn as they play, Player to Computer and Computer to
Computer both. After certain moves, we have enough
parameters to analyze the two algorithms and differentiate
between them. Also, we have tried to make an elegant UI,
Convenient as it only requires a Browser (Chrome or another),
which is Challenging as the Game progresses.

http://www.jrps.in/
mailto:info@jrps.in

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 13 Issue: 03 | NCASIT-2022 | April 18th 2022

Paper is available at http://www.jrps.in | Email : info@jrps.in

Refereed & Peer Reviewed

13

II. LITERATURE SURVEY

The paper describes the idea and the execution of

Implementation and analysis of Monte Carlo Tree Search and

Minimax algorithm for computers to play Dots and Boxes,

The biggest problem arrived is the parameters for

differentiating Monte-Carlo algorithm and Mini-max

algorithm, the only way we could arrive at the conclusion is

the make Algorithms play against each other at least 100 - 200

times to have enough data to allocate parameters for

differentiating between them. The goal of this project is to

develop an artificial intelligence player for dots and boxes (a

simple children’s game) which improves upon standard

methods. Dots and boxes have proven more difficult to work

with than other simple games.

Even games whose rules are much more complicated – chess,

for instance – have seen great success with the standard

methods, such as minimax and alpha-beta. However, these

approaches have not worked well with dots and boxes due to

the difficulty of evaluating a given board and a large number

of possible moves.

To overcome these problems, a relatively new method of

guiding gameplay is used: Monte Carlo tree search (MCTS).

MCTS has recently been successful in Go players, which

previously had been extremely weak MCTS was used to

overcome the inherent difficulties that arise in Go because of

the massive number of possible moves and board

configurations in a standard game. Because the two games

share the features which make other approaches unsuccessful

and because of its success in Go, MCTS seems to be the ideal

candidate for playing dots and boxes. This project applies

MCTS to dots and boxes and offers two potential

improvements to the standard MCTS.

The advantage of testing such methods in a game setting is

that one can evaluate the performance in closed systems with

simple rules that are easier to write algorithms for and where

the optimal result can usually be calculated using known

methods for comparison.

III. OBJECTIVE

The overarching objective of this project is to analyze the

game of Dots and Boxes using Monte-Carlo Tree Search and

MiniMax Algorithm and to analyze various game-playing

strategies made by Both the Algorithm. In which we will be

differentiating both the algorithms against each other and find

out which Algorithm has the most chances to win the game.

As both algorithms are used in playing games or to make

game moves, The final goal is to find which algorithm is best

to make moves in Dot and Boxes.

The first phase of this project is to create a working and

reliable implementation of the game Dots and Boxes that can

be played between two players, human or Algorithm. The

second phase of this project is to analyse both the game itself

and various strategies used to play the game. This will be

achieved using the implementation of the game as a testbed.

The specified game-playing strategies to be implemented are:

making moves randomly, making moves in a predetermined

order, making moves based on a Minimax evaluation of the

game tree, and making moves based on a Monte Carlo Tree

Search (MCTS) evaluation of the game tree.

IV. METHODOLOGY

The algorithms chosen and implemented have been picked to

help analyse the game itself, and also to demonstrate how

effective different strategies can be in the game of dots and

boxes.

The approach being taken to tackle this problem is a practical

one. A significant proportion of the work being done for this

project is in the implementation. Creating the game and

creating the players for the game will take some time; the rest

of the time will be spent analysing the performance of the

players and writing the report. Results will be gathered

through repeated testing of each game playing strategy. Each

player type will have a strategy they use. To compare them

they will be matched against every other player as well as

themselves, in order to produce a ranking from best to worst

and quantify their relative strength. All of the planned players,

with the exception of the random player, will have parameters

that can be tweaked to improve their performance. There will

also be repeated testing of these players with modified

parameters to determine what the best configuration is for

each player. Once the best parameters for each player are

discovered, the players can be trialled against each other. The

players will be trialled on multiple sizes of the game board.

Standard trials will take place on 3x3 and 4x4 boards as these

boards have previously been solved, allowing comparison

between the results achieved and known results. Trials will

also take place on a 5x5 board, as this board has not yet been

solved and it will be interesting to analyse the results on this

board. Facing every player against every other is a good way

to analyse the relative strengths of each player and is also a

good way to analyse the game itself. The data obtained from

players playing against copies of themselves can show if a

particular board starting position is stronger. If the player who

starts the match wins significantly more games than the player

who goes second, it will show that player 1 is in an

intrinsically stronger position than player 2.

http://www.jrps.in/
mailto:info@jrps.in

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 13 Issue: 03 | NCASIT-2022 | April 18th 2022

Paper is available at http://www.jrps.in | Email : info@jrps.in

Refereed & Peer Reviewed

14

A. Monte Carlo Tree Search

The principle operation of MCTS is to analyse the best moves

that are available to the player. A state tree is constructed with

nodes corresponding to potential moves that can be made.

These moves are discovered by the selection process and

analysed by random playout. The selection of moves is made

using the UCB formula for exploitation and exploration. The

formula for calculating

UCB for each individual move is:

Wi = win score for this node,

ni = number of times this node has been visited,

Ni = number of times the parent of this node has been visited,

C = exploration coefficient, which is tuned experimentally.

This calculates a value for UCB with two parameters. The first

parameter is the exploitation

parameter, which is simply a ratio of how many winning states

have been discovered after this node and how many times this

node has been visited. The second parameter is the exploration

parameter, which factors in how many times this node has

been visited in total compared to its parent node.

The exploration parameter is scaled by c, which allows the

algorithm to be tuned to explore more or explore less

depending on the use case.

One iteration of the MCTS algorithm includes four steps:

1. Selection: The selection will start at the root node

and select the child of this node with the highest UCB

value. This process continues, selecting the child of

the current node with the highest value until a leaf

node is reached. A leaf node is a node that has no

children.

2. Expansion: Once a leaf node has been found and

selected, create children from this node

corresponding to all of the possible moves that could

be made from this game state.

3. Simulation: Choose one of these node children and

perform ‘rollout’.This is a simulation of the game

playing out until the end. The basic implementation

of this is a random playout.

4. Backpropagation: Take the result of the simulation

and backpropagate the score up the tree, all the way

to the root node.

The implementation of Monte Carlo Tree Search (MCTS) was

created following guides found online. The Player class

MonteCarloPlayer contains an instance of MonteCarloTree.

This instance of MonteCarloTree is populated with multiple

MonteCarloNode instances. The methods that make up the

MCTS algorithm are contained in MonteCarloTree and in

MonteCarloNode.

The main loop for MCTS controls the logic and methods like

it controls the ‘Selection’ step of the algorithm and can initiate

the ‘Simulation’ and ‘Backpropagation’ steps. Each pass of

the loop will first check if the current node has not been

visited, or if the game in that state is finished. If these

conditions are not true then the best child of this node will

become the new current node. This method, choose child, also

controls the ‘Expansion’ step of the algorithm. If the node has

no children when its choose child method is called then it will

create children for itself and return one of these. If the current

node has not been visited before (n == 0), then the algorithm

will perform a rollout from this node. A rollout consists of

making a copy of the game, getting the list of all moves left to

be made, shuffling this list, and then playing all of the moves.

At the end of the rollout method, the node will call its own

backpropagate method. This will increment its visit counter

(n) and will update its win counter (t). The backpropagate

method then calls the backpropagate method of its parent

node. This will ensure the values are back propagated up the

entire tree all the way to the root. Once this is complete, the

main loop will set the current node back to the root node and

start again. This is performed until the time limit is reached, at

which point the child of the root node with the highest UCB

value is returned.

http://www.jrps.in/
mailto:info@jrps.in

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 13 Issue: 03 | NCASIT-2022 | April 18th 2022

Paper is available at http://www.jrps.in | Email : info@jrps.in

Refereed & Peer Reviewed

15

Figure 1. Monte Carlo Tree Search

B. Minimax Algorithm

The minimax algorithm is a decision-making algorithm used

to determine the most optimal move of a player in a two-

player game against their opponent. The minimax algorithm is

simply a recursive backtracking algorithm that uses the depth-

first search to explore the entire tree while selecting the most

optimal path for a player.

Minimax was originally designed for n-player zero-sum games

with perfect information and has more recently been extended

to complex games and general decision making in the

existence of uncertainty. As Dots and Boxes is an n-player

zero sum game with perfect information, minimax is a very

good fit for this scenario.

Here, the player (maximizer) aims to get the maximised value

from the algorithm while the opponent/other player

(minimizer) aims to get the minimised value from the

algorithm.The initial values of the maximizer & minimizer are

set to their worst case values of -infinity & +infinity. The

maximizer selects the maximum possible value from its

children while the minimizer selects the minimum possible

value from its children.

Minimax is mainly implemented using three main functions;

Maximise, Minimise and Evaluate.The MaxMove function

receives a game state. If the game has terminated in this game

state it will return a static evaluation of the game using the

EvalGameState function. This returns a score for the state the

game is in, using specific game knowledge. If the game has

not terminated then all possible moves from this position are

generated and iterated through. For each move that can be

made a new game state is generated, simulating the player

making this move. This new game state is then passed to the

MinMove function, which will perform the same operations

with one key difference. When the bottom of the tree is

reached and the game states are evaluated, the scores are

returned and passed back to these functions. The MaxMove

function will save the move that returned the highest score,

whereas the MinMove function will save the move that

returned the lowest score. These represent opposing players

making moves. The MaxMove function represents the player

making the best move they can possibly make and the

MinMove function represents their opponent making the best

move they could possibly make. In the case of a zero-sum

game the best move for an opponent will correspond to the

worst move for the player.

Minimax that exploits the property:

This leads to the NegaMax algorithm, which simply negates

the value returned from the recursive call to NegaMax. In the

case of a game in which players strictly make alternate moves

this produces the exact same result as Minimax. This

simplifies the algorithm as it removes the need for separate

MinMove and MaxMove functions. This algorithm also

introduces the concept of a depth variable. This allows the

calling function to control the depth of the search in the game

tree. When NegaMax is called it will be passed a positive

integer, when NegaMax is called again, the depth is lowered

by 1. When the depth value reaches 0 an evaluation of the

game state is made and returned. This is the version of the

algorithm that will be adapted for use in this project.

http://www.jrps.in/
mailto:info@jrps.in

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 13 Issue: 03 | NCASIT-2022 | April 18th 2022

Paper is available at http://www.jrps.in | Email : info@jrps.in

Refereed & Peer Reviewed

16

Figure 2. Minimax Algorithm

V. CONCLUSION

The aims of this project that were outlined in the important

conclusions section included creating an implementation of

the game, creating working computer players and analysing

game playing strategies. Most of these objectives have been

successfully achieved, with the exception of determining

which player position is stronger. A working and reliable

implementation of the game Dots and Boxes has been created.

The time spent designing and implementing the game in a

modular way paid off; the game is reliable and the player

system is very loosely coupled to the game system.

 A working GUI has also been created to make playing the

game enjoyable and easy. The GUI has been designed so that

users cannot enter data that would cause the game to crash. It

has also been designed so that humans can play against each

other, against the computer or can watch two computer players

play against each other.

The computer players created for the game are successful in

their implementation. They play reliably and are consistent in

their strategies. Data was collected by simulating many games

with each of the players, on multiple different board sizes.

This data was analysed and a ranking was produced, ordering

the players from strongest to weakest. This ranking is

Minimax, Monte Carlo Tree Search, Ordered then Random.

Multiple potential improvements to the players that could be

made have been identified after analysis of the data obtained

and further research. These are described in the future work

section of the report.

The only aim that has not been achieved is determining if

either player 1 or player 2 is in a stronger position on any

board size. This was attempted and data was gathered, but the

data was inconclusive and no definitive answer was found.

This is likely because the computer players that have been

implemented are not strong enough to exploit the strength

inherent in either position. To determine this in future,

stronger players would need to be produced and more trials

would need to be performed.

VI. REFERENCES

[1] Solving Dots and Boxes. Barker, Joseph K, and Korf,

Richard E. 2012, Proceedings of the Twenty-Sixth AAAI

Conference on Artificial Intelligence, Vol. 26, pp. 420-426.

[2] Chapter 16: Dots and Boxes. Berlekamp, Elwyn R,

Conway, John H and Guy, Richard K. 2, s.l. :Academic Press,

1982, Winning ways for your Mathematical plays, Volume 3,

Vol. 3, pp. 507-550.

[3] Improving Monte Carlo Tree Search With Artificial

Neural Networks without Heuristics. Cotarelo,Alba, et al. 5,

2021, Applied Sciences, Vol. 11, p. 2056.

[4] Haran, Brady and Berlekamp, Elwyn. How to always

win at Dots and Boxes -Numberphile.

YouTube. [Online] 12 January 2015.

https://www.youtube.com/watch?v=KboGyIilP6k.

[5] Wilson, David. Dots-And-Boxes Analysis Results.

[Online] [Cited: 01 04 2021.]

https://wilson.engr.wisc.edu/boxes/results.shtml.

[6] Mastering the game of Go with deep neural networks

and tree search. Silver, David, et al. 2016, Nature, Vol. 529,

pp. 484-489.

.

[7] Champandard, Alex J. AiGameDev. [Online] 12

August 2014. [Cited: 14 April 2021.]

https://web.archive.org/web/20170313041719/http://aigamede

v.com/open/coverage/mcts-romeii/.

[8] Monte Carlo Methods. Johansen, A.M. 2012,

International Encyclopaedia of Education (Third Edition), pp.

296-303.

[9] Efficient Selectivity and Backup Operators in Monte-

Carlo Tree Search. Coulom, Rémi. Turin, Italy : Springer,

http://www.jrps.in/
mailto:info@jrps.in
https://www.youtube.com/watch?v=KboGyIilP6k
https://wilson.engr.wisc.edu/boxes/results.shtml
https://web.archive.org/web/20170313041719/http:/aigamedev.com/open/coverage/mcts-romeii/
https://web.archive.org/web/20170313041719/http:/aigamedev.com/open/coverage/mcts-romeii/

© INTERNATIONAL JOURNAL FOR RESEARCH PUBLICATION & SEMINAR

ISSN: 2278-6848 | Volume: 13 Issue: 03 | NCASIT-2022 | April 18th 2022

Paper is available at http://www.jrps.in | Email : info@jrps.in

Refereed & Peer Reviewed

17

2006, Computers and Games, 5th International Conference,

pp. 29-31.

[10] Choudhary, Ankit. Analytics Vidhya. [Online] 2019.

[Cited: 20 03 2021.]

https://www.analyticsvidhya.com/blog/2019/01/monte-carlo-

tree-search-introduction-algorithmdeepmind-alphago/.

[11] Riverbank Computing Limited. PyQt5==5.15.2.

Dorchester : Riverbank Computing Limited, 2020.

[12] Geeks for Geeks. GeeksforGeeks. [Online] 2019.

https://www.geeksforgeeks.org/minimaxalgorithm-in-game-

theory-set-4-alpha-beta-pruning/.

[13] GeeksforGeeks. [Online] 2019.

https://www.geeksforgeeks.org/ml-monte-carlo-tree-

searchmcts/.

[14] Baeldung. Baeldung. [Online] 2020.

https://www.baeldung.com/java-monte-carlo-tree-search.

[15] Parallel Monte-Carlo Tree Search. Guillaume, M.J-

B., Chaslot, Mark H.M. and Winands, Jaap van den Herik.

Beijing : Springer, 2008, Computers and Games, 6th

International Conference, pp. 60-71. 978-3-540-87607-6.

[16] Wikimedia. [Online] 21 11 2011. [Cited: 01 04

2021.]

https://commons.wikimedia.org/wiki/File:Dots-and-boxes.svg.

[17] Wikimedia. [Online] 3 April 2020. [Cited: 20 04

2021.]

https://en.wikipedia.org/wiki/File:MCTS-steps.svg

http://www.jrps.in/
mailto:info@jrps.in
https://www.analyticsvidhya.com/blog/2019/01/monte-carlo-tree-search-introduction-algorithmdeepmind-alphago/
https://www.analyticsvidhya.com/blog/2019/01/monte-carlo-tree-search-introduction-algorithmdeepmind-alphago/
https://www.geeksforgeeks.org/minimaxalgorithm-in-game-theory-set-4-alpha-beta-pruning/
https://www.geeksforgeeks.org/minimaxalgorithm-in-game-theory-set-4-alpha-beta-pruning/
https://www.geeksforgeeks.org/ml-monte-carlo-tree-searchmcts/
https://www.geeksforgeeks.org/ml-monte-carlo-tree-searchmcts/
https://www.baeldung.com/java-monte-carlo-tree-search
https://commons.wikimedia.org/wiki/File:Dots-and-boxes.svg
https://en.wikipedia.org/wiki/File:MCTS-steps.svg
https://en.wikipedia.org/wiki/File:MCTS-steps.svg

